ISSN 1600-5368

Dichlorido(dimethyl sulfoxide- κ O)(1,10phenanthroline-5,6-dione- $\kappa^2 N,N'$)copper(II) dimethyl sulfoxide monohydrate

Guang-Jun Xu,^{a,b} Ming-Jin Xie,^{c,b} Li Feng,^{d,b} Shi-Ping Yan^b* and Dai-Zheng Liao^b

^aBethune Military Medical College, Shijiazhuang 050081, People's Republic of China, ^bDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China, ^cDepartment of Chemistry, Yunnan University, Kunming 650091, People's Republic of China, and ^dTianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China Correspondence e-mail: yansp@nankai.edu.cn

Received 1 August 2007; accepted 2 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.039; *wR* factor = 0.121; data-to-parameter ratio = 14.8.

The title compound, $[CuCl_2(C_{12}H_6N_2O_2)(C_2H_6OS)]$ · $C_2H_6OS\cdotH_2O$, was obtained by the reaction of 1,10-phenanthroline-5,6-dione (phendione) and CuCl_2·2H_2O. The copper(II) ion is pentacoordinated in a distorted squarepyramidal environment. The water molecule connects the complex and a dimethyl sulfoxide solvent molecule by O– H···O and O–H···Cl hydrogen bonds.

Related literature

For related literature, see: Addison & Rao (1984); Coyle *et al.* (2003); Deegan *et al.* (2006); Eshwika *et al.* (2004); Ghosh *et al.* (2006); Xu *et al.* (2006); Yamada *et al.* (1992).

Experimental

Crystal data

 $\begin{bmatrix} \text{CuCl}_2(\text{C}_{12}\text{H}_6\text{N}_2\text{O}_2)(\text{C}_2\text{H}_6\text{OS}) \end{bmatrix} & \text{Triclin} \\ \text{C}_2\text{H}_6\text{OS}\cdot\text{H}_2\text{O} & a = 7.2 \\ M_r = 518.90 & b = 13 \end{bmatrix}$

Triclinic, $P\overline{1}$ a = 7.213 (2) Å b = 13.285 (4) Å c = 13.316 (4) Å $\alpha = 61.405 (4)^{\circ}$ $\beta = 76.169 (5)^{\circ}$ $\gamma = 86.688 (5)^{\circ}$

V = 1085.5 (6) Å³

Data collection

Bruker SMART CCD area-detector	5536 measured reflections
diffractometer	3809 independent reflections
Absorption correction: multi-scan	2886 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1997)	$R_{\rm int} = 0.024$
$T_{\min} = 0.654, \ T_{\max} = 1.000$	
(expected range = $0.532-0.814$)	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ 257 parameters $wR(F^2) = 0.121$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.54$ e Å⁻³3809 reflections $\Delta \rho_{min} = -0.50$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5−H5A···O4	0.97	2.15	3.037 (5)	151
$O5-H5B\cdots Cl2^{r}$	0.91	2.38	3.233 (5)	158

Symmetry code: (i) x, y + 1, z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

This work received financial support from the National Science Foundation of China (grant No. 20331020).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2463).

References

- Addison, A. W. & Rao, T. N. (1984). J. Chem. Soc. Dalton Trans. pp. 1349– 1356.
- Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coyle, B., Kavanagh, K., McCann, M., Devereux, M. & Geraghty, M. (2003). *Biometals*, 16, 321–329.
- Deegan, C., Coyle, B., McCann, M., Devereux, M. & Egan, D. A. (2006). *Chem.-Biol. Interact.* 164, 115–125.
- Eshwika, A., Coyle, B., Devereux, M., McCann, M. & Kavanagh, K. (2004). *Biometals*, **17**, 415–422.
- Ghosh, S., Barve, A. C., Kumbhar, A. A., Kumbhar, A. S., Puranik, V. G., Datar, P. A., Sonawane, U. B. & Joshi, R. R. (2006). *J. Inorg. Biochem.* **100**, 331–343.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Xu, G. J., Kou, Y. Y., Feng, L., Yan, S. P., Liao, D. Z., Jiang, Z. H. & Cheng, P. (2006). Appl. Organomet. Chem. 20, 351–356.
- Yamada, M., Tanaka, Y. & Youshimoto, Y. (1992). Bull. Chem. Soc. Jpn, 65, 1006–1011.

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.14 \text{ mm}$

 $\mu = 1.47 \text{ mm}^{-1}$

T = 293 (2) K

Z = 2

Acta Cryst. (2007). E63, m2313 [doi:10.1107/S1600536807038007]

Dichlorido(dimethyl sulfoxide- κO)(1,10-phenanthroline-5,6-dione- $\kappa^2 N$,N')copper(II) dimethyl sulfoxide monohydrate

G.-J. Xu, M.-J. Xie, L. Feng, S.-P. Yan and D.-Z. Liao

Comment

The complexes of 1,10-phenanthroline-5,6-dione (phendione) could intercalate within the base pairs of DNA (Ghosh *et al.*, 2006; Coyle *et al.*, 2003). Based on this finding, the derivatives of phendione are promising in the treatment of many diseases (Deegan *et al.*, 2006; Eshwika *et al.*, 2004), cancer amongst all, and their development is still in progress. Following our interest in biological activity of metal complexes, we decided to focus our attention on the complexes of phendione (Xu *et al.*, 2006).

The asymmetric unit of complex consists of a monomeric copper(II) complex, one dimethyl sulfoxide (DMSO) molecule and one water molecule. The copper(II) ion is in a five-coordinated environment. The phendione acts as bidentate ligand [Cu-N1 = 2.062 (3)Å and Cu-N2 = 2.059 (3) Å], forming with the metal ion a five-membered chelate ring with a bite angle of 80.38 (12)°. A monodentate dimethyl sulfoxide interacts with copper at a distance [Cu-O3 = 2.019 (3) Å]. Addison *et al.* (1984) have proposed a structural index for five-coordinated geometries of copper(II). This index has been defined as $\tau = (\beta - \alpha)/60$, with β and α being the two largest angles. For perfect tetragonal geometry τ equals zero, while it becomes unity for perfect trigonal bipyramidal geometry. From the bond lengths and angles it can be concluded that the coordination geometry around copper(II) is clearly square-pyramidal ($\tau = 0.14$) with a CuN₂OCl plane and one chloride ion in the apex. The copper(II) ion is shifted 0.3319 Å out of the plane defined by (N1, N2, O3 and Cl1) and directed towards Cl2.

The water molecule connects the complex and a dimethyl sulfoxide solvent molecule by O—H…O and O—H…Cl hydrogen bonds.

Experimental

1,10-Phenanthroline-5,6-dione was prepared according to the literature method (Yamada *et al.*, 1992). The complex was prepared by mixing a 10 ml me thanolic solution of copper(II) chloride dihydrate (171 mg, 0.5 mmol) and 1,10-phenan-throline-5,6-dione (105 mg, 0.5 mmol) in methanolic solution (10 ml) was added, and then the solution was stirred for about 3 h at room temperature. The green precipitate was collected by filtration. Crystals of suitable quality for X-ray analysis were obtained by slow evaporation of a dimethyl sulfoxide solution.

Refinement

All H atoms were initially located in a difference Fourier map, but refined using a riding model with with C—H distances in the range 0.95–1.00 Å, O—H = 0.91 and 0.97Å and $U_{iso}(H) = 1.2U_{eq}(C,O)$. The methyl H atoms were then constrained to an ideal geometry, with C—H distances of 0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, but each group was allowed to rotate freely about its C—C bond.

Figures

Fig. 1. Molecular view of the title complex with the atomic labeling scheme. Displacement ellipsoids are shown at the 30% probability level.

Dichlorido(dimethyl sulfoxide- κO)(1,10-phenanthroline-5,6-dione- $\kappa^2 N$,N')copper(II) dimethyl sulfoxide mono-hydrate

Crystal data	
$[CuCl_2(C_{12}H_6N_2O_2)(C_2H_6OS)]\cdot C_2H_6OS\cdot H_2O$	<i>Z</i> = 2
$M_r = 518.90$	$F_{000} = 530$
Triclinic, PT	$D_{\rm x} = 1.588 {\rm ~Mg~m}^{-3}$
<i>a</i> = 7.213 (2) Å	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
b = 13.285 (4) Å	Cell parameters from 2461 reflections
c = 13.316 (4) Å	$\theta = 2.9 - 27.3^{\circ}$
$\alpha = 61.405 \ (4)^{\circ}$	$\mu = 1.47 \text{ mm}^{-1}$
$\beta = 76.169 \ (5)^{\circ}$	T = 293 (2) K
$\gamma = 86.688 \ (5)^{\circ}$	Block, green
V = 1085.5 (6) Å ³	$0.30 \times 0.20 \times 0.14 \text{ mm}$

Data collection

3809 independent reflections
2886 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.024$
$\theta_{\text{max}} = 25.0^{\circ}$
$\theta_{\min} = 1.8^{\circ}$
$h = -8 \rightarrow 8$
$k = -10 \rightarrow 15$
$l = -7 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.121$	$w = 1/[\sigma^2(F_0^2) + (0.0706P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
$R[F^{2} > 2\sigma(F^{2})] = 0.039$ $wR(F^{2}) = 0.121$ $S = 1.04$	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0706P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

3809 reflections

257 parameters

 $\Delta \rho_{max} = 0.54 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.50 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotronic or equivalent isotronic displacement narameter	• <i>(\</i>	÷)
Γ i u chomu alomic coorainales ana isotropic or equivalent isotropic alspiacement parameter	(A	

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.68285 (7)	0.20517 (4)	0.11889 (4)	0.02951 (17)
Cl1	0.7899 (2)	0.32022 (10)	-0.08024 (10)	0.0523 (3)
Cl2	0.98176 (15)	0.15681 (9)	0.19795 (9)	0.0395 (3)
01	0.1728 (5)	-0.2722 (3)	0.5060 (3)	0.0508 (9)
O2	0.3546 (5)	-0.3228 (3)	0.3314 (3)	0.0529 (9)
N1	0.4842 (5)	0.1080 (3)	0.2746 (3)	0.0283 (7)
N2	0.6593 (4)	0.0587 (3)	0.1052 (3)	0.0273 (7)
C1	0.4025 (6)	0.1372 (4)	0.3593 (4)	0.0372 (10)
H1	0.4317	0.2103	0.3465	0.045*
C2	0.2762 (6)	0.0620 (4)	0.4650 (4)	0.0405 (11)
H2	0.2214	0.0852	0.5206	0.049*
C3	0.2336 (6)	-0.0481 (4)	0.4857 (4)	0.0376 (10)
Н3	0.1512	-0.0997	0.5559	0.045*
C4	0.3165 (5)	-0.0803 (3)	0.3994 (3)	0.0273 (9)
C5	0.2780 (6)	-0.1980 (4)	0.4167 (4)	0.0347 (10)
C6	0.3800 (6)	-0.2259 (4)	0.3177 (4)	0.0353 (10)
C7	0.5102 (6)	-0.1347 (3)	0.2090 (4)	0.0324 (9)
C8	0.6115 (6)	-0.1544 (4)	0.1163 (4)	0.0384 (10)
H8	0.5950	-0.2248	0.1193	0.046*
C9	0.7360 (6)	-0.0680 (4)	0.0207 (4)	0.0393 (10)
Н9	0.8061	-0.0802	-0.0404	0.047*
C10	0.7550 (6)	0.0378 (4)	0.0173 (3)	0.0339 (10)
H10	0.8367	0.0960	-0.0480	0.041*
C11	0.5396 (5)	-0.0261 (3)	0.2003 (3)	0.0252 (8)
C12	0.4413 (5)	0.0007 (3)	0.2951 (3)	0.0252 (8)
S1	0.79906 (15)	0.43275 (9)	0.09613 (9)	0.0335 (3)
O3	0.6295 (4)	0.3409 (2)	0.1482 (3)	0.0374 (7)
C13	0.6938 (8)	0.5662 (4)	0.0314 (6)	0.077 (2)

H13A	0.6706	0.5795	-0.0419	0.115*
H13B	0.7790	0.6269	0.0174	0.115*
H13C	0.5750	0.5642	0.0838	0.115*
C14	0.8440 (11)	0.4352 (6)	0.2211 (5)	0.091 (2)
H14A	0.7293	0.4517	0.2632	0.137*
H14B	0.9432	0.4935	0.1953	0.137*
H14C	0.8837	0.3617	0.2720	0.137*
S2	0.63777 (15)	0.62156 (9)	0.50874 (10)	0.0376 (3)
O4	0.6473 (4)	0.7528 (2)	0.4453 (3)	0.0444 (8)
C15	0.8179 (8)	0.5835 (4)	0.4152 (5)	0.0541 (13)
H15A	0.7891	0.6132	0.3397	0.081*
H15B	0.8198	0.5014	0.4507	0.081*
H15C	0.9409	0.6157	0.4054	0.081*
C16	0.7491 (7)	0.5797 (4)	0.6291 (4)	0.0469 (12)
H16A	0.8742	0.6182	0.5997	0.070*
H16B	0.7600	0.4981	0.6666	0.070*
H16C	0.6725	0.6005	0.6852	0.070*
O5	1.0108 (5)	0.8885 (3)	0.2676 (3)	0.0571 (9)
H5A	0.9228	0.8233	0.3256	0.069*
H5B	0.9671	0.9578	0.2554	0.069*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0328 (3)	0.0211 (3)	0.0286 (3)	-0.0039 (2)	-0.0017 (2)	-0.0091 (2)
Cl1	0.0765 (9)	0.0347 (6)	0.0295 (6)	-0.0109 (6)	-0.0054 (6)	-0.0047 (5)
Cl2	0.0376 (6)	0.0404 (6)	0.0410 (6)	0.0036 (5)	-0.0108 (5)	-0.0193 (5)
01	0.054 (2)	0.0378 (19)	0.0383 (18)	-0.0198 (16)	0.0016 (15)	-0.0044 (15)
O2	0.077 (2)	0.0281 (18)	0.054 (2)	-0.0146 (16)	-0.0163 (18)	-0.0178 (16)
N1	0.0329 (18)	0.0204 (17)	0.0331 (18)	-0.0015 (14)	-0.0035 (15)	-0.0157 (15)
N2	0.0269 (17)	0.0262 (18)	0.0246 (17)	0.0007 (14)	-0.0037 (14)	-0.0099 (15)
C1	0.042 (2)	0.029 (2)	0.040 (2)	-0.0028 (19)	-0.002 (2)	-0.020 (2)
C2	0.038 (2)	0.046 (3)	0.040 (3)	0.001 (2)	0.003 (2)	-0.028 (2)
C3	0.034 (2)	0.039 (3)	0.032 (2)	-0.002 (2)	0.0004 (19)	-0.015 (2)
C4	0.026 (2)	0.025 (2)	0.027 (2)	-0.0021 (16)	-0.0051 (16)	-0.0104 (18)
C5	0.034 (2)	0.031 (2)	0.032 (2)	-0.0051 (19)	-0.0103 (19)	-0.008 (2)
C6	0.040 (2)	0.030 (2)	0.036 (2)	-0.0036 (19)	-0.0139 (19)	-0.013 (2)
C7	0.034 (2)	0.028 (2)	0.036 (2)	-0.0004 (18)	-0.0123 (18)	-0.0138 (19)
C8	0.052 (3)	0.031 (2)	0.042 (3)	0.007 (2)	-0.016 (2)	-0.024 (2)
C9	0.044 (3)	0.043 (3)	0.032 (2)	0.008 (2)	-0.004 (2)	-0.021 (2)
C10	0.033 (2)	0.037 (2)	0.028 (2)	-0.0007 (19)	-0.0020 (18)	-0.015 (2)
C11	0.030 (2)	0.019 (2)	0.026 (2)	0.0039 (16)	-0.0087 (16)	-0.0092 (17)
C12	0.0235 (19)	0.026 (2)	0.025 (2)	0.0014 (16)	-0.0071 (16)	-0.0105 (17)
S1	0.0327 (6)	0.0236 (5)	0.0375 (6)	-0.0054 (4)	-0.0021 (5)	-0.0114 (5)
O3	0.0345 (16)	0.0251 (15)	0.0463 (17)	-0.0071 (12)	0.0030 (13)	-0.0170 (14)
C13	0.051 (3)	0.021 (3)	0.127 (6)	-0.002 (2)	-0.018 (3)	-0.013 (3)
C14	0.115 (6)	0.102 (5)	0.054 (4)	-0.060 (4)	-0.007 (4)	-0.033 (4)
S2	0.0355 (6)	0.0263 (6)	0.0487 (7)	0.0013 (5)	-0.0126 (5)	-0.0151 (5)

O4	0.0537 (19)	0.0255 (16)	0.0522 (19)	0.0075 (14)	-0.0178 (16)	-0.0156 (15)
C15	0.066 (3)	0.039 (3)	0.057 (3)	0.010 (2)	-0.009(3)	-0.026 (3)
C16	0.050 (3)	0.037 (3)	0.049 (3)	0.004 (2)	-0.017 (2)	-0.015 (2)
O5	0.062 (2)	0.0375 (19)	0.061 (2)	0.0060 (16)	-0.0097 (18)	-0.0177 (17)
Geometric param	neters (Å, °)					
Cu1—O3		2.019 (3)	С9—	-C10	1.3	98 (6)
Cu1—N2		2.059 (3)	С9—	-H9	0.9	300
Cu1—N1		2.062 (3)	C10-	-H10	0.9	300
Cu1—Cl1		2.2894 (13)	C11-	C12	1.4	82 (5)
Cu1—Cl2		2.5390 (13)	S1—	-03	1.5	57 (3)
O1—C5		1.222 (5)	S1—	-C13	1.7	76 (5)
O2—C6		1.230 (5)	S1—	·C14	1.7	85 (5)
N1—C12		1.356 (5)	C13-	-H13A	0.9	600
N1—C1		1.358 (5)	C13-	-H13B	0.9	600
N2—C10		1.351 (5)	C13-	-H13C	0.9	600
N2—C11		1.357 (5)	C14-	H14A	0.9	600
C1—C2		1.398 (6)	C14-	H14B	0.9	600
C1—H1		0.9300	C14-	H14C	0.9	600
C2—C3		1.390 (6)	S2—	-04	1.5	28 (3)
C2—H2		0.9300	S2—	C16	1.7	98 (5)
C3—C4		1.406 (6)	S2—	C15	1.8	02 (5)
C3—H3		0.9300	C15-	HI5A	0.9	600
C4—C12		1.407 (5)	C15-	-H15B	0.9	600
C4—C5		1.499 (6)	C15-	-H15C	0.9	600
C5—C6		1.547 (6)	C16-	-H16A	0.9	600
C6—C7		1.500 (6)	C16-	-H16B	0.9	600
C7—C8		1.407 (6)	C16-	H16C	0.9	600
C7—C11		1.416 (5)	05—	-H5A	0.9	690
C8—C9		1.385 (6)	05—	-H5B	0.9	055
С8—Н8		0.9300				
O3—Cu1—N2		164.67 (12)	C10-	—С9—Н9	120	0.4
O3—Cu1—N1		88.13 (12)	N2—	-C10—C9	122	2.5 (4)
N2—Cu1—N1		80.35 (12)	N2—	-C10—H10	118	3.7
O3—Cu1—Cl1		92.68 (9)	С9—	-C10—H10	118	3.7
N2—Cu1—Cl1		93.81 (9)	N2—	-C11—C7	121	1.9 (3)
N1—Cu1—Cl1		156.11 (10)	N2—	-C11—C12	116	5.5 (3)
O3—Cu1—Cl2		95.00 (9)	С7—	-C11—C12	121	1.6 (3)
N2—Cu1—Cl2		96.66 (9)	N1—	-C12—C4	122	2.9 (3)
N1—Cu1—Cl2		98.39 (10)	N1—	-C12—C11	114	4.9 (3)
Cl1—Cu1—Cl2		105.31 (5)	C4—	-C12—C11	122	2.2 (3)
C12—N1—C1		117.9 (3)	03—	-S1—C13	104	4.4 (2)
C12—N1—Cu1		114.5 (2)	03—	-S1—C14	104	4.6 (2)
C1—N1—Cu1		127.5 (3)	C13-		100	0.2 (4)
C10—N2—C11		118.8 (3)	S1—	O3—Cu1	115	5.78 (16)
C10—N2—Cu1		127.5 (3)	S1—	-C13—H13A	109	9.5
C11—N2—Cu1		113.6 (2)	S1—	С13—Н13В	109	9.5
N1—C1—C2		122.7 (4)	H13A	А—С13—Н13В	109	9.5

N1—C1—H1	118.6	S1—C13—H13C	109.5
C2—C1—H1	118.6	H13A—C13—H13C	109.5
C3—C2—C1	119.1 (4)	H13B-C13-H13C	109.5
С3—С2—Н2	120.5	S1—C14—H14A	109.5
С1—С2—Н2	120.5	S1—C14—H14B	109.5
C2—C3—C4	119.2 (4)	H14A—C14—H14B	109.5
С2—С3—Н3	120.4	S1—C14—H14C	109.5
С4—С3—Н3	120.4	H14A—C14—H14C	109.5
C3—C4—C12	118.2 (4)	H14B—C14—H14C	109.5
C3—C4—C5	121.9 (4)	O4—S2—C16	106.1 (2)
C12—C4—C5	119.9 (3)	O4—S2—C15	105.4 (2)
O1—C5—C4	122.8 (4)	C16—S2—C15	99.5 (2)
O1—C5—C6	119.3 (4)	S2—C15—H15A	109.5
C4—C5—C6	117.9 (3)	S2—C15—H15B	109.5
O2—C6—C7	122.0 (4)	H15A—C15—H15B	109.5
O2—C6—C5	119.0 (4)	S2—C15—H15C	109.5
C7—C6—C5	118.9 (4)	H15A—C15—H15C	109.5
C8—C7—C11	118.3 (4)	H15B—C15—H15C	109.5
C8—C7—C6	122.3 (4)	S2—C16—H16A	109.5
C11—C7—C6	119.4 (4)	S2—C16—H16B	109.5
C9—C8—C7	119.3 (4)	H16A—C16—H16B	109.5
С9—С8—Н8	120.3	S2—C16—H16C	109.5
С7—С8—Н8	120.3	H16A—C16—H16C	109.5
C8—C9—C10	119.2 (4)	H16B—C16—H16C	109.5
С8—С9—Н9	120.4	H5A—O5—H5B	114.7
03 - Cu1 - N1 - C12	172 2 (3)	C5—C6—C7—C11	11(6)
N_2 — Cu_1 — N_1 — Cl_2	2,4 (3)	C11 - C7 - C8 - C9	0.2 (6)
Cl1-Cu1-N1-Cl2	79 8 (4)	C6-C7-C8-C9	-177.2.(4)
Cl2— $Cu1$ — $N1$ — $Cl2$	-930(3)	C7 - C8 - C9 - C10	-14(6)
03-Cu1-N1-C1	-11.7(3)	$C_{11} = N_{2} = C_{10} = C_{9}$	-0.2(6)
N_2 U_1 N_1 N_1 U_1 N_1 U_1 N_1 U_1 N_1 N_1 U_1 N_1 N_1 U_1 N_1	178 5 (4)	$C_{11} = N_2 = C_{10} = C_9$	176.0(3)
Cl1-Cu1-N1-C1	-1041(4)	C_{8} C_{9} C_{10} N_{2}	14(6)
Cl_2 — Cu_1 — $N1$ — Cl_2	83 1 (3)	C10-N2-C11-C7	-1.0(5)
O_{3} C_{11} N_{2} C_{10}	139 4 (4)	$C_{11} = N_2 = C_{11} = C_7$	-177.7(3)
N1 - Cu1 - N2 - C10	-1788(3)	C10-N2-C11-C12	1788(3)
Cl1-Cu1-N2-C10	24.6 (3)	$C_{11} = N_2 = C_{11} = C_{12}$	21(4)
Cl_{2} Cu_{1} N_{2} Cl_{0}	-813(3)	C_{8} C_{7} C_{11} N_{2}	10(6)
O_{3} C_{11} N_{2} C_{11}	-44.2 (6)	C6-C7-C11-N2	1.0(0) 178 5 (3)
N1 - Cu1 - N2 - C11	-2 A (2)	$C_{0} = C_{1} = C_{11} = C_{12}$	-178.8(3)
$C_{11} = C_{11} = N_2 = C_{11}$	-1501(2)	$C_{6} = C_{7} = C_{11} = C_{12}$	-1.3(6)
$Cl_2 Cu_1 N_2 Cl_1$	159.1(2)	$C_{1} = C_{1} = C_{1} = C_{1}$	1.5(0)
$C_{12} = C_{11} = N_2 = C_{11}$	-0.5(6)	$C_1 = N_1 = C_1 = C_4$	176.6(3)
C_{12} N_1 C_1 C_2	-1765(3)	$C_1 = N_1 = C_1^2 = C_4^2$	-1785(3)
$\mathcal{L}_{\mathrm{ul}} = \mathcal{L}_{\mathrm{ul}} = \mathcal{L}_{\mathrm{ul}} = \mathcal{L}_{\mathrm{ul}}$	170.3(3)	$C_{1} = N_{1} = C_{12} = C_{11}$	-20(4)
1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	-0.8(7)	$C_{1} = 0.1 = 0.12 = 0.11$	-0.1(6)
$C_1 - C_2 - C_3 - C_4$	0.0(7)	$C_{5} - C_{4} - C_{12} - N_{11}$	-170 1 (2)
$C_2 - C_3 - C_4 - C_{12}$	179 A (A)	C_{3} C_{4} C_{12} C_{11}	178 A (A)
$C_2 = C_3 = C_4 = C_3$	1/7.4 (4) 0.2 (6)	$C_{5} = C_{4} = C_{12} = C_{11}$	-0.6 (5)
03-04-03-01	0.2 (0)	C_{3} C_{4} C_{12} C_{11} C_{12} N_{12}	-0.0(3)
C12 $C4$ $C5$ $O1$			

C3—C4—C5—C6	-178.6 (4)	C7—C11—C12—N1	179.7 (3)
C12—C4—C5—C6	0.4 (5)	N2-C11-C12-C4	-178.7 (3)
01	-0.8 (6)	C7—C11—C12—C4	1.1 (6)
C4—C5—C6—O2	178.0 (4)	C13—S1—O3—Cu1	135.8 (3)
O1—C5—C6—C7	-179.4 (4)	C14—S1—O3—Cu1	-119.4 (3)
C4—C5—C6—C7	-0.6 (6)	N2—Cu1—O3—S1	-168.1 (4)
O2—C6—C7—C8	-0.1 (6)	N1—Cu1—O3—S1	150.76 (19)
С5—С6—С7—С8	178.5 (4)	Cl1—Cu1—O3—S1	-53.13 (18)
O2—C6—C7—C11	-177.5 (4)	Cl2—Cu1—O3—S1	52.50 (18)

Hydrogen-bond	geometry	(Å,	°)
	6	\ <i>'</i>	

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O5—H5A…O4	0.97	2.15	3.037 (5)	151
O5—H5B···Cl2 ⁱ	0.91	2.38	3.233 (5)	158
Symmetry codes: (i) x , y +1, z .				

Fig. 1

